It’s been 30 years since Farman et al. published their paper on the ozone “hole”. (Well, I’m a day early but who posts on Saturdays, eh?)
It had a huge impact: it’s been cited nearly 3,000 times and accelerated the negotiations that resulted in the Montreal Protocol, which helped phase out the chemicals that were damaging the ozone layer. Those chemicals can stay in the atmosphere for a very long time so the ozone “hole” is far from fixed, which can sometimes cause confusion over the effectiveness of the Montreal Protocol. It’ll probably be decades still until the “hole” is fixed (see the Annual Records at the bottom left-hand side of this NASA page for historical data.)
This slow recover particularly interests me at the moment as I recently did a little bit of work on the health risks associated with the hole at its peak for those living and working in Antarctica. This may become a more important problem in the future if further warming and ice sheet retreat make regions like the Antarctic Peninsula easier to inhabit, work in and/or exploit. Hopefully I’ll get to a bit more work on this soon.
And I’ve always had a real soft spot for the paper as the ozone “hole” was the first time that I remember being aware of an environmental issue, despite being pretty young at the time (I was at primary school 30 years ago). I suspect that it played a large in shaping my view of the world and my career direction so I thought I should note the anniversary.
So, Happy Birthday Farman et al. (1985)!
If you want to get deeper into the ozone “hole” then Chapter 7 in Volume I of “Late Lessons from Early Warnings”, written by Joe Farman, is quite nice and the chapter in Merchants of Doubt is a good read on this as well. [Update, 15/5/2015 0937] There also a BBC “Costing the Earth” episode on the 30th anniversary of the ozone hole but I’ve not listened to it yet (thanks to @jimmcquaid on twitter for pointing me in that direction).
Reference
Farman, J., Gardiner, B., & Shanklin, J. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction Nature, 315 (6016), 207-210 DOI: 10.1038/315207a0